Reconciling qualitative and abstract (and scalable) reasoning with Boolean networks

Loïc Paulevé^{1,2}, Thomas Chatain³, Stefan Haar³

¹ CNRS, LaBRI, Bordeaux, France

² CNRS, LRI, Univ Paris-Sud, Univ Paris-Saclay, France

³ LSV, ENS Paris-Saclay, Inria Saclay, France

Discrete Dynamical Systems (Boolean Networks)

Systems Biology (Signalling/regulation networks)

Concurrency Theory (Semantics)

L Paulevé, T Chatain, S Haar

Most permissive semantics of Boolean networks Introduction

Boolean Network (BN) $f: \mathbb{B}^n \to \mathbb{B}^n$

Configuration: $x \in \mathbb{B}^n$

Most permissive semantics of Boolean networks Introduction

Boolean Network (BN) $f: \mathbb{B}^n \to \mathbb{B}^n$

Most permissive semantics of Boolean networks Introduction

Most permissive semantics of Boolean networks Generalized Asynchronicity

Most permissive semantics of Boolean networks Generalized Asynchronicity

Most permissive semantics of Boolean networks Reachable configurations

Most permissive semantics of Boolean networks Reachable configurations

Should we reach configurations beyond generalized asynchronicity?

Most permissive semantics of Boolean networks Boolean networks for biological processes Example with gene regulation

Influence graph

Most permissive semantics of Boolean networks Boolean networks for biological processes Example with gene regulation

Influence graph

Reachable configurations

Boolean
$$f_1(x) \triangleq \neg x_2$$

Herefore $f_2(x) \triangleq x_1 \land x_3$ + update mode = $f_3(x) \triangleq ...$

Validation w.r.t. observations (e.g. time series data) ⇒ we expect measurements match with reachable configurations

Gene expression is not Boolean

Qualitative modelling: Boolean vs multivalued networks

Most permissive semantics of Boolean networks Gene expression is not Boolean Qualitative modelling: Boolean vs multivalued networks

[protein 1]

Boolean network

$$f_2(x) \stackrel{\Delta}{=} x_1$$

Most permissive semantics of Boolean networks **Gene expression is not Boolean** Qualitative modelling: Boolean vs multivalued networks

Boolean network

$$f_2(x) \stackrel{\Delta}{=} x_1$$
$$f_3(x) \stackrel{\Delta}{=} x_1$$

L Paulevé, T Chatain, S Haar

Most permissive semantics of Boolean networks Gene expression is not Boolean Qualitative modelling: Boolean vs multivalued networks

Remark: Multivalued models can require different thresholds for each target

Properties of Boolean networks for biology Given a Boolean network f of dimension n

Reachability (seq. of transitions from conf. x to y) ⇒ PSPACE-complete with update modes Potential behaviours/capabilities of the cell

Fixpoints (f(x) = x) \Rightarrow NP-complete for sync/async/gasync Steady states/phenotypes

Attractors (smallest sets of conf. closed by transitions) ⇒ PSPACE-complete with update modes Steady states/phenotypes

Most permissive semantics of Boolean networks Qualitative vs abstract modelling

Boolean network

- logic of activity w.r.t. regulators
- update mode (sync, async, etc.)

Multilevel network

+ define activation thresholds

Quantitative model

nformation

Consistency

analysis at Boolean level transposable to multilevel?

9

Update modes of Boolean networks: a **bug**...

$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$

$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$

$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$

 ⇒ all configurations reachable with any update mode
 (generalized) asynchronous mode

Most permissive semantics of Boolean networks Practical implications

Update modes can miss admissible transitions

Model synthesis from observations ⇒ Reject valid solutions (false negatives) (wrongly concludes on reachability)

Prediction for reprogramming (control)

Find mutations such that

1. y (goal phenotype) is reachable from x

⇒ False negatives

2. z (bad phenotype) is not reachable from x

⇒ False positives

Most permissive semantics of Boolean networks enabling new behaviours

• delay between firing and application of state change

⇒ allow interleaving other state changes

• in "intermediate" states 🛛 🖊

other components choose what they see

Most permissive semantics of Boolean networks Application to motivating example

$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$

Most permissive semantics of Boolean networks Application to motivating example

$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$

⇒ valid with respect to multivalued refinements

Most permissive semantics of Boolean networks Properties of the most permissive semantics

Correct abstraction of multilevel/quantitative systems:

- includes all the transitions of every update mode
- multilevel refinements only remove behaviours
- Reachability can be decided in quadratic nb of transitions (PTIME with locally-monotonic networks, or encoded as BDDs/Petri nets/...; NP-complete otherwise; instead of PSPACE-complete with update modes)
- Attractors are hypercubes (minimal trap spaces)
 - ⇒ finding attractors is NP-complete (instead of PSPACE-complete)
 - \Rightarrow fixpoints are the same as with update modes

Most permissive semantics of Boolean networks Refinements of Boolean Networks

A multivalued network

$$F:\mathbb{M}^n\to\{\uparrow,-,\downarrow\}$$

is a refinement of a Boolean network f iff

Most permissive semantics weakly simulates any multivalued refinement with *any update mode*

(can be extended to ODEs)

L Paulevé, T Chatain, S Haar

Reachability with the most permissive semantics

Cost of one transition in component i

- when *f* is encoded as BDDs/Petri nets/...

Reachability with the most permissive semantics

Deciding reachability requires quadratic nb of transitions

Main property: y reachable from $x \Leftrightarrow$ there exists a path of length \leq 3n transitions

Reachability with the most permissive semantics

Deciding reachability requires quadratic nb of transitions

Main property: y reachable from $x \Leftrightarrow$ there exists a path of length $\leq 3n$ transitions

- ① only transitions to "in-between" states*
- ② orient towards final states
- ③ converge to final states

*: some components must not be updated!

Reachability with the most permissive semantics

Deciding reachability requires quadratic nb of transitions

Main property: y reachable from $x \Leftrightarrow$ there exists a path of length $\leq 3n$ transitions

- ① only transitions to "in-between" states*
- ② orient towards final states
- ③ converge to final states

*: some components must not be updated!

NP in general PTIME w/ locally-monotonic; BDDs; Petri nets..

Attractors with the most permissive semantics Attractor: smallest set of configurations closed by transitions

Attractors are hypercubes

Attractors with the most permissive semantics Attractor: smallest set of configurations closed by transitions

Attractors are hypercubes

Attractors with the most permissive semantics Attractor: smallest set of configurations closed by transitions

Attractors are hypercubes

Attractors with the most permissive semantics Attractor: smallest set of configurations closed by transitions

Attractors are hypercubes

Attractors of most permissive semantics = minimal trap spaces Existence of attractor within hypercube is NP-complete

Most permissive semantics of Boolean networks Is most permissive semantics restrictive?

Minimality of abstraction to any "most permissive" transition, there is corresponding multilevel transition (work in progress w/ "most permissive" paths: non-minimal, but tricky counter-examples)

- fixpoints (stable states) are preserved (identical)
- trap spaces: known to be relevant for reasoning with attractors [Klarner et al in Nat. Comp. 2015] [Naldi in Front. Phys. 2018]
- ⇒ most permissive semantics seems still adequate to model differentiation processes !

Most permissive semantics of Boolean networks Applications

Prototype python library + ASP (SAT) implementation https://github.com/pauleve/mpbn

Boolean network synthesis from reachability properties

- ⇒ becomes NP
- ⇒ CaspoTS implements most permissive reachability (ASP) https://github.com/bioasp/caspots

Computation of reachable attractors

 \Rightarrow In the order of ms for networks tested so far (~100 nodes)

WiP with most permissive semantics:

- model synthesis from differentiation data [Stéphanie Chevalier]
- prediction for cellular reprogramming

Most permissive semantics of Boolean networks Conclusion

Update modes of Boolean networks (sync, async, etc.):

- difficult to justify (strong implications on dynamics)
- can miss important behaviours [CHP at AUTOMATA'18]
- ⇒ lead to reject valid models of biological systems...
- have limited tractability (model-checking, ...)

Most permissive semantics:

- correct abstraction: guarantees that adding information (multilevel, thresholds) will only remove behaviours
- simpler complexity: reachability PTIME, attractors NP ⇒ much higher tractability

Future work: most permissive for multilevel networks