
Structure of Abstract Syntax trees
for Colored Nets in PNML

F. Kordon & L. Petrucci
Fabrice.Kordon@lip6.fr

Laure.Petrucci@lipn.univ-paris13.fr

version 0.2 (draft)

June 26, 2004

Abstract

Formalising the description of a Coloured Petri Net eases the implementation
of tools based on such a representation. We propose in this document a structure
to represent of places, arcs, and transitions by means of abstract syntax trees to be
used in the standardised representation for Petri nets to beproposed as ISO-IEC
15909 – part 2.

This document will only deal with information that is not supported in Petri
nets. Hence, information such as the name of a place or a transition as well
as graphical information are neither mentioned nor described. We focus on the
extensions required for handling high-level features only.

This document mainly focuses on the abstract syntax trees structure. The
translation into XML should be performed when an agreement on this proposal
is reached.

1

Contents

1 Introduction 3
1.1 Behavior of a Well Formed Petri Nets 3
1.2 Declarative part of a Well Formed Petri Nets4
1.3 Predefined color functions . 4
1.4 Place Type and Marking . 5
1.5 Arc terms . 5
1.6 Transition Conditions . 5

2 Proposed Structure for Abstract Syntax Trees 5
2.1 Global declarations . 6

2.1.1 Macro definitions . 6
2.1.2 Basic Types . 6
2.1.3 Type Definition . 7
2.1.4 Variable Declaration 7
2.1.5 Global Declarations 8

2.2 Expressions . 8
2.2.1 General expressions 9
2.2.2 Boolean expressions 9

2.3 Places . 10
2.4 Arcs . 11
2.5 Transitions . 12

2

1 Introduction

1 This document is a proposal contributing to part 2 of the ISO 15909 standard. It
is based on [1].

2 We propose to base the Colored Petri net standard on the formal definition of Well
Formed Petri Nets, proposed in [2] (called WFPN in the rest ofthis document).
The incentive for that choice is that WFPN correspond to a basic type of high
level Petri nets for which the theory is sufficiently strong and are equipped with a
sufficient number of high level features. WFPN are supportedby several tools [4,
3] and a stochastic extension allows for performance evaluation. This last point
is of interest since the standard has to consider several extensions that should be
compatible.

3 Well Formed Petri Nets are a high-level net model that includes, besides the
graphical features of a Petri net - places, transitions, arcs and their names - more
complex annotations:

• markings and tokens,

• types and initial markings of places,

• transition conditions,

• arc terms,

4 All these require an enriched syntax.

5 The additional information we previously enumerated is used for the definition
of the semantics of a Well Formed Petri Nets, which is briefly and informally
described in the next subsections.

1.1 Behavior of a Well Formed Petri Nets

6 The behavior of a Well Formed Petri Net is controlled by the same set of rules
used for general colored nets:

• A type is associated with each place and transition of the model. Elements
of these domains are called colors.

• Each token in a place is colored by an element of the place type(several
tokens may have the same color). The marking of a place is thusa multiset
of colors - a set in which an element may occur several times.

• The enabling and firing rule comply with clause 7 of [1]. For a transition
mode to occur, each input place of the transition must contain a sufficient
(possibly null) number of tokens for every color of the placedomain. These
tokens will be taken from the place when the transition fires.Similarly, the
firing will produce colored tokens in the output places of thetransition. As
in Petri nets, the arcs annotations determine the number of tokens to be
taken or produced. However, this annotation is now a function associating
a multiset of colors of the place type with each mode of the transition.

• The mode used to enable a transition must satisfy some predicate called
transition condition (clause 7.4.1 in [1]).

3

1.2 Declarative part of a Well Formed Petri Nets

7 The description of a Well Formed Petri Nets net is composed oftwo parts: the
first part contains the declaration of the Petri net (places,transitions and arcs).
This declaration is included in the present model and takes place in the first part
of the PNML standard. We describe in the second part, all the high-level features
of the model for which we give the syntactic construction rules.

8 These high-level annotations are listed in sections 1.4 to 1.6. However, their
description, i.e., the description of types, markings, transition conditions must
refer to the type definitions of the model.

9 These descriptions are done in different extensions of the standard that are all
optional :

• The class declaration section defines object classes. The objects are the
elementary entities (sites, memories, etc.) that appear inthe description of
the model;

• The domain declaration section defines the set of color domains associated
with the different places and transitions of the net. A colorassociates one
or several elements in a tuple;

• The variable declaration section defines the name and the domain to which
variables used for the valuation of the arcs belong.

• The macro declaration allows parameterization of expressions.

1.3 Predefined color functions

10 The only predefined color functions are:

• ++n(x) that increments a variablex of valuen. This is a circular increment
as defined in [2].

• −− n(x) that decrements a variablex of valuen. This is a circular decre-
ment as defined in [2].

• D.all that associates, for color typeD, a token for each possible value of
the color type1.

• < x1, ...,xn > that aggregates several tokens into a structured one. Implic-
itly, the extraction function is defined as the one that allows extraction of a
component in a structured token.

11 Boolean functions are also available to compare tokens:

• = and 6= allow to compare two tokens having the same color type.

• <, >, ≥ and≤ allow sorted comparison for class tokens only. As in pro-
gramming languages, there are no predefined operators for these compar-
isons on composed types. Such operators may be defined in extensions.

12 Finally boolean functions can be used to combine comparisonfunctions on to-
kens:

1all is usually named: ”broadcast function”.

4

• AND corresponds to the boolean product.

• OR corresponds to the boolean addition.

• NOT corresponds to the negation operator.

13 The priority between these boolean operators is the one of ”traditional” lan-
guages,NOT is evaluated prior toAND which is evaluated prior toOR.

1.4 Place Type and Marking

14 Since token present in places are colored, a place must be associated with a color
type. Types may be basic (e.g. integer or enumeration) or built upon basic types
using e.g. cartesian product (see aggregation function is section 1.3). A place
without type is assumed to contain untyped tokens (as in Petri nets).

15 Thus, a label contains the name of the color type for tokens stored in the corre-
sponding place. This label should be an identifier.

16 The initial marking is part of the information associated with the place. A mark-
ing is described as a set of tokens that may have a multiplicity greater than 1. It
is possible to use thebroadcast function to define the initial marking of a place
in a compact manner (see section 1.3).

17 If the domain of the place isnull, the place is considered as a P/T one and the
only possible labels are positive integers.

1.5 Arc terms

18 The terms are built from predefined operations and variables(as listed in 1.3,
paragraph 10). If not defined, it is assumed that the arc takes/produces one un-
typed token from/to the connected place.

1.6 Transition Conditions

19 The aim of a guard is to restrict the possible bindings of a transition by adding
constraints on the variables. The guards are not defined in a particular section.
They only appear in the information associated with a transition.

20 The conditions included in the definition of WFPN can comparetwo terms, pos-
sibly with variables. Both terms must belong to the same type. The comparison
operators are those of section 1.3, paragraph 11.

21 Conditions can be combined using usual boolean functionsAND, OR andNOT
(see section 1.3, paragraph 12). It is also possible to add parentheses to locate
sub-expressions.

2 Proposed Structure for Abstract Syntax Trees

22 This section details all the possible abstract syntax trees(AST) identified to de-

5

scribe unambiguously a WFPN in the PNML format. We focus on the tree struc-
ture that could be easily expressed using XML.

23 We outline the following four types of AST for:

• global declaration (i.e. global to the whole net2),

• places,

• arcs,

• transitions.

2.1 Global declarations

2.1.1 Macro definitions

RDB: these macros should help to define constants to enable parameterization of
the model. Basically, the idea is to replace a macro by a string (representing a
number, a label, etc.) directly in the abstract syntax treesof the description.

2.1.2 Basic Types

24 The Abstract syntax tree associated with a basic type shouldrespect the structure
provided in figure 1. The root node is labeled by the keywordBASICTYPE and
has two subtrees:

• the first one corresponds to a string node and is the name of thebasic type,

• the second one describes the type content and refers to the structure pre-
sented in Figure 2. B A S I C T Y P E" s t r i n g " T Y P E � D E F

Figure 1: Structure of an AST describing a basic type.

25 A basic type may be an integer class (with possible bounds) oran enumeration
type. According to these possibilities, the definition of the type content has to
respect one of the two structures presented in Figure 2.

26 The left subtree of Figure 2 corresponds to an integer-type content. The root is
labeled by the keywordINTEGER. If it has no subtree, then it corresponds to the
default integer class supported by the standard. Otherwise, it contains two nodes
that have integer values. The first one contains the lower bound and the second
one the upper bound.

2There should be some way to factor out declarations when considering hierarchically described Petri
Nets.

6

27 The right subtree of Figure 2 corresponds to an enumerate type content. The
root is labeled by the keywordENUM. The subtrees list all the possible values in
the type ; these nodes labels are strings corresponding to one enumeration value.
Values are totally ordered based on the order they appear in the abstract syntax
tree: the first subtree (leftmost) corresponds to the ”lowest” value of the type and
the last one (rightmost) to the ”highest”.I N T E G E R< i n t e g e r > < i n t e g e r > E N U M" s t r i n g " " s t r i n g "• • •

Figure 2: Structure of an AST defining the content of a basic type.

2.1.3 Type Definition

28 A type is a cartesian product of types (basic or not).

29 Its structure should conform to the tree in figure 3. The root node is labeled by
the keywordTYPE. The left subtree is labeled by a string providing the name
of the color type. The right subtree root is labeled by the keyword PRODUCT.
Under this node, there are as many nodes as involved color type. Thesth subtree
is labeled by the identifier of the color type of thesth component.T Y P E" s t r i n g " P R O D U C T" s t r i n g " " s t r i n g "• • •

Figure 3: Structure of an AST describing a color type.

2.1.4 Variable Declaration

30 A variable may contain any value of a given color type.

31 It should be declared and associated with the correspondingcolor type. The cor-
responding abstract syntax tree must respect the structurepresented in figure 4.
The root node is labeled by the keywordVAR. The first subtree (leftmost) is
labeled by a string that identifies the variable name and the second subtree is
labeled by the name of the type.

7

V A R" s t r i n g " " s t r i n g "
Figure 4: Structure of an AST describing a variable declaration.

2.1.5 Global Declarations

32 Global declarations gather all types and variables declared in a Petri net3.

33 The global declaration abstract syntax tree appears only once in the model4 and
is structured as shown in figure 5. The root node is labeled by the keyword
DECLARATIONS and has three subtrees:

• the first one has a root labeled by the keywordBASICTYPES. Below this
node, there is one subtree per basic type. These subtrees respect the struc-
ture defined in section 2.1.2.

• the second one has a root labeled by the keywordTYPES. Below this node,
there is one subtree per type. These subtrees respect the structure defined
in section 2.1.3.

• the last one has a root labeled by the keywordVARS. Below this node, there
is one subtree per variable. These subtrees respect the structure defined in
section 2.1.4. If there are no variable declared in the model, theVARS node
has no subtree. D E C L A R A T I O N SB A S I C T Y P E S T Y P E S V A R SC L A S S PD E F D O M A I N PD E F V A R P D E F• • • • • • • • •
Figure 5: Structure of an AST describing global declarations.

2.2 Expressions

34 This section defines abstracts syntax trees that correspondto expressions that
can be used to represent the initial marking of places, arcs terms or transitions
conditions.

3or in a sub-Petri net model if hierarchical nets are considered. Visibility rules should be defined then.
4or in the Petri net component.

8

35 There are two types of expressions:

• general expressions that define one or more tokens.

• boolean expressions that can refer to color tokens or color variables but
involve boolean operators only,

2.2.1 General expressions

36 Figure 6 shows the general structure of a general expressiontree, which is re-
cursive. The root of a general expression abstract tree is labeled by the keyword
EXPR. The first subtree is a string that designates the function tobe applied and
the other subtrees are the required parameters. Parametersare represented using
general expression abstract syntax trees.E X P R" s t r i n g " E X P R _T R E E E X P R _T R E E• • •

Figure 6: Structure of an AST describing a general expression.

37 Table 1 references all the predefined functions that are allowed for WFPN5.

38 For thevarre f operator, the second subtree is reduced to a node labeled by a
string.

39 For theconst operator, the second subtree is reduced to a node labeled by astring
that represents the value of the constant. Let us note that, for theconst function,
the type of the value can be deduced from the ”surrounding” information (color
type of a place, associated variable in a comparison, etc.).

40 For theint operator, the second subtree is reduced to a node labeled by an integer
value.

2.2.2 Boolean expressions

41 Figure 7 shows the general structure of an expression tree, which is also recur-
sive. The root of a boolean expression abstract tree is labeled by the keyword
BEXPR. The first subtree is a string that designates the function tobe applied
and the next subtrees are the required parameters.

42 Table 2 references all the boolean functions that are allowed for WFPN6.

5User-defined functions should be handled in an extension of this format. Can it be independent from
a given tool?

6User-defined functions should be handled in an extension of this format. Can it be independent from
a given tool?

9

Function Parameter(s) Definition
−− variable or token constant; pos-

itive
predecessor function of rank N

++ variable or token constant; pos-
itive

successor function of rank N

× natural; expression, variable or
token constant

multiplication of the expression

+ two expressions, variables or
token constants

set addition of two expressions

− two expressions, variables or
token constants

set substraction of two expressions

all a color class or a color domain broadcast function that associates one
token of each possible color of the class
or domain.

product at least one expression cartesian product of the involved ex-
pressions

extract an expression; a positive extraction of thenth element in a prod-
uct that is represented by an expression
(for example, a reference to a structured
variable)

varre f one identifier reference to a declared variable
const one identifier reference a valid value of a color class
int integer value reference to a integer constant for use

when necessary in the structure of an
expression

Table 1: List of predefined non boolean operators.B E X P R" s t r i n g " B E X P R /E X P R oT R E E B E X P R /E X P R oT R E E• • •
Figure 7: Structure of an AST describing a boolean expression.

2.3 Places

43 Each place has to reference a declared color type. The abstract syntax tree is
reduced to a node labeled by a color class or a color domain. The stringnull
denotes the absence of color type (tokens in the place are untyped tokens).

44 Each place may reference a marking. If absent, the default marking of a place is
assumed to be ”no token”.

45 The description of a place marking has to respect the structure presented in fig-
ure 8. The root of the abstract syntax tree is labeled using the keywordMARK-
ING. This root has only one subtree that is a general expression tree (see sec-
tion 2.2.1) with the following restrictions:

• if the color type associated with the place isnull (no color type), then the
expression is an integer expression (functionint) that denotes the number

10

Function Parameter(s) Definition
> 2 expressions corresponding to

an elementary tokens
comparison (greater than)

< 2 expressions corresponding to
an elementary tokens

comparison (less than)

≥ 2 expressions corresponding to
an elementary tokens

comparison (greater or equal than)

≤ 2 expressions corresponding to
an elementary tokens

comparison (less or equal than)

= 2 expressions corresponding to
a token

comparison (equal)

6= 2 expressions corresponding to
a token

comparison (different)

and 2 boolean expressions booleanand
or 2 boolean expressions booleanor
not 1 boolean expression boolean negation
true none true boolean function
f alse none false boolean function

Table 2: List of boolean operators.M A R K I N GE X P R |T R E E
Figure 8: Structure of an AST describing the marking of a place.

of non colored tokens located in the place.

• if there is a color type associated with the place, then the subtree should
denote a finite number of tokens. Thus, only the following functions can
be found in the definition of the marking:× (when several tokens have the
same profile),+ (union of tokens),all (the broadcast function),− (sub-
traction from a set of tokens7)

all is a faster way to enumerate all the values of a color type.

product allows to build structured tokens.

const references a possible value of the type.

int refers to any integer value when necessary.

2.4 Arcs

46 The description of an arc term has to respect the structure presented in figure 9.
The root of the abstract syntax tree is labeled using the keyword ATERM. This
root has only one subtree that is a boolean expression tree (see section 2.2.2) with
the following restrictions:

7It is typically associated with the broadcast function, forexample, C.all − value that means ”all the
possible values for class C except the one that is listed”.

11

• when the arc is connected to a untyped place, Then the PNML notation for
Petri net is assumed.

• the root function below theATERM can only be tagged by+ (union of
tokens),− (substraction from a set of tokens),product (to build structured
tokens),× (when several tokens have the same profile),all (the broadcast
function),varre f (to use a color variable that is declared and visible).

• below the root of the expression (see previous item), all expression func-
tions can be referenced. A T E R MB E X P R �D E F

Figure 9: Structure of an AST describing arc terms.

2.5 Transitions

47 A transition may have a condition that prevents its firing forsome bindings. If no
condition description is supplied, then a default valuetrue is assumed. It means
that the transition can be fired for any possible bindings from the input places.

48 The description of a transition condition has to respect thestructure presented
in figure 10. The root of the abstract syntax tree is labeled using the keyword
TCOND. This root has only one subtree that is a boolean expression tree (see
section 2.2.2) with the following restriction. The generalexpressions contained
in the boolean expression tree can only contain the following functions:−− and
++ (to compare a modified input token),product (to hold a structured token) ,
extract (to extract a component in a structured token when necessary) , varre f
(to reference a color variable of an input arc label),const (to denote a valid value
of a color class),int (to refer any integer when it is necessary).T C O N DB E X P R �T R E E
Figure 10: Structure of an AST describing the condition of a transition.

49 Note that a transition may have a condition only if at least one of its input places
contains colored tokens.

12

References

[1] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-Formed
Coloured Nets and their symbolic reachability graph. In G. Rozenberg and
K. Jensen, editors,LNCS : High Level Petri Nets. Theory and Application.
Springer Verlag, June 1991.

[2] GreatSPN: GRaphical Editor, Analyzer for Timed, and Stochastic Petri Nets.
url : http://www.di.unito.it/∼greatspn/.

[3] The CPN-AMI Home page. url :http://www.lip6.fr/cpn-ami.

13

